26.3.17

LIII Olimpiada Matemática Española



Esta fin de semana celebrouse en Alcalá de Henares a LIII Olimpíada Matemática Española para alumnos de bacharelato. Souben dos problemas que caeron nun grupo de profesores de Matemáticas no que participo en Facebook, e non puiden evitar roerlle ao primeiro, que adoita ser o máis sinxelo, e que este ano tiña que ver con números naturais. Observade:

Determina o número de valores distintos da expresión
$$\frac{n^2-2}{n^2-n+2}$$
onde $n \in \{1,2,3,\dots,100\}$

Por variar un pouco, vou compartir a solución que atopei; e para que non vexades a miña solución antes de terdes oportunidade de pensar unha vós mesmos, déixovos unha interesante figura que vin en xaneiro en futility closet:


Ide a Futility Closet por máis información

Eis a solución:

A estratexia vai consistir en calcular os valores distintos do 1 ao 100 que teñen a mesma imaxe pola función $f(n)=\frac{n^2-2}{n^2-n+2}$

O certo é que resulta máis sinxelo do que vaticinei ao ver a expresión. Supoñamos que n e m son valores distintos entre 1 e 100 que cumpren que $f(n)=f(m)$. Entón:

$$\frac{n^2-2}{n^2-n+2}=\frac{m^2-2}{m^2-m+2}$$
$$(n^2-2)(m^2-m+2)=(n^2-n+2)(m^2-2)  $$
$$n^2m^2-n^2m+2n^2-2m^2+2m-4=n^2m^2-2n^2-nm^2+2n+2m^2-4 $$
$$nm^2-n^2m+4n^2-4m^2+2m-2n=0 $$
$$nm(m-n)+4(n+m)(n-m)+2(m-n)=0 $$
$$ (m-n)[nm-4(n+m)+2]=0 $$ 
Como n e m son distintos, o segundo factor ten que anularse:
$$nm-4n-4m+2=0$$
Esta ecuación pode resolverse de varios xeitos, por exemplo despexando unha das incógnitas e impoñendo posteriormente que tome valores naturais, mais observando a simetría do polinomio é máis limpo así:
$$(n-4)(m-4)-14=0 \rightarrow (n-4)(m-4)=14 $$
$$\Longrightarrow \begin{cases} \begin{cases}n-4=14 \\ m-4=1 \end{cases} \\ \ \ \ ou \\ \begin{cases}n-4=7 \\ m-4=2 \end{cases} \end{cases} $$
A priori podería haber divisores negativos de 14, p.ex. $n-4=-2$, pero provocaría que o outro factor fose $m-4=-7$ e por tanto m non sería natural.
En conclusión, só temos as solucións $$(n,m)=(18,5) \ e  \ (n,m)=(11,6)$$
Isto implica que todos os números do 1 ao 100 dan valores distintos da función f(n) agás estas dúas parellas, polo que hai 98 valores distintos

11.3.17

Divertimento xeométrico(7)


Revisando o fantástico libro de Ross Honsberger Mathematical Gems II (táboa de contidos en Cut the Knot) atopei esta propiedade dos triángulos.
Como é usual nos divertimentos, non vou explicar nada; tócavos a vós adiviñar que sucede na figura:



9.3.17

A voltas co octógono


Na anterior entrada propoñía a seguinte figura, na que aparece un octógono que tiña algo de curioso:

  

Non obtiven resposta no blogue, mais si en twitter:

Efectivamente o curioso do octógono, polo menos para min, é que tendo todos os lados iguais, non é regular debido a que os seus ángulos non son iguais, senón que hai dous tipos: os dos vértices N-O-S-L son menores cós dos vértices NO-SO-SE-NE.

Na seguinte figura podedes comparar a situación dos vértices do noso octógono(·) coa dos vértices(x) do octógono regular que comparte co noso o centro e a medida do lado:

  
Como actividade para levar á aula da ESO, o interesante sería pedir aos alumnos que atopasen distintos xeitos de amosar que o octógono non é regular. Ademais de adestrar a 'vista' xeométrica, a idea serviría tamén para practicar as demostracións informais: 'se fose regular, a propiedade ___ tería que cumprirse, mais non se cumpre, por tanto...'

Aínda no bacharelato, se houbese tempo, podería ampliarse a lista de métodos para demostrar que non é regular, co cálculo explícito das coordenadas das interseccións, o produto escalar, etc.

3.3.17

Un octógono calquera


No capítulo 3, Espacio y forma, do libro Aprender a enseñar matemáticas en la educación secundaria obligatoria, de Cecilia Calvo et al. dei con esta situación. Aínda sendo elementar, como eu non sabía dela, compártoa aquí.


 
  

Partimos dun cadrado, unimos cada vértice cos puntos medios dos dous lados nos que non está, obtendo 8 segmentos. Consideramos os puntos de intersección, violetas na figura, que forman un octógono.

Pois ben:

Que ten de curioso este octógono?