![]() |
O triángulo ABC é isóscele e P está na base. Vedes algo? |
Xa teño comentado en varias entradas que na época na que tiña que preparar as oposicións para acceder á docencia, hai case 20 anos, eu basicamente estaba dedicado a resolver os problemas elementais que daba atopado pola rede. Como sempre comento, o pragmatismo non é unha das miñas virtudes, aínda que esta situación tivo un xiro de guión interesante: na oposición que aprobei, caeron dous problemas de olimpíadas matemáticas. Problemas que non fixera antes, pero é de supoñer que o meu non-adestramento tivo que axudar.
Desa época gardo dous arquivos de problemas resoltos, supostamente un con problemas sinxelos e outro con problemas menos sinxelos, aínda que esa clasificación que fixera agora resulta case arbitraria. (agarrádevos: os sinxelos ocupan 200 folios e os menos sinxelos, 340) Case nunca reviso eses arquivos, hoxe ao rematar unha tarefa deume por mirar, e pensei en traer uns cantos problemas vellos para que as miñas hordas de lectores poidan divertirse como fixen eu naquel momento.
Sen un criterio claro, velaquí:
- Canadá 1985: Un triángulo ten lados 6, 8 e 10. Amosar que existe unha única recta que biseque tanto a área como o perímetro do triángulo.
- Australia 1988: Se o natural n ten k uns na súa representación binaria, entón o número \frac{n!}{2^{n-k}} é un natural impar.
- Wisconsin 2006: Sexa S={2,3,22,23,32,33,222,...} o conxunto de naturais cuxas cifras son unicamente 2 e 3. Amosar que non hai 3 termos distintos en S que estean en progresión aritmética.
- Tau Beta Pi, Spring 2000: Unha urna contén 80 bólas, 72 verdes e 8 azuis. Extraemos bólas ao chou, unha a unha, ata que quitarmos todas as bólas azuis da urna. Cal é o valor esperado de bólas verdes na urna nese momento?
- Mathematical Reflections J123: Resolver en números primos a ecuación x^y+y^x=z
- Canadá 1982: Amosar que o número de permutacións de 1,2,..., n sen puntos fixos diferénciase nunha unidade do número de permutacións con exactamente un punto fixo.
- Eire 2002: Definamos a sucesión a_n mediante a_1=a_2=a_3=1 e a_{n+3}=\frac{a_{n+2} a_{n+1}+2}{a_n}. Amosar que todos os termos da sucesión son enteiros.
E agora algúns deses problemas que caberían ao final dun boletín do instituto:
- Michigan Autumn 1996: O coche 1 percorre 27 millas a 43 mph e logo 27 millas a 56 mph. O coche 2 circula 27 minutos a 43 mph e logo 27 minutos a 56 mph. Cal dos dous coches ten maior velocidade media?
- Argentina Intercolegial, 2006: Nun parque só hai gatos de dúas cores: brancos e negros. Os gatos machos representan o 55% do total de gatos do parque. A proporción entre machos brancos e machos negros é igual á proporción entre gatos brancos e gatos negros. Achar a proporción entre machos brancos e femias brancas.
- Memorial's Local Undergraduate Competition Winter 2001: Amosar que \frac{\sqrt{y^2+1}+y+x}{x \sqrt{y^2+1}-xy+1} é independente de x, supoñendo que o denominador é non nulo.
- Croacia 1999: Partimos da terna de números (a_1,a_2,a_3)=(3,4,12). Levamos a cabo o seguinte proceso un número finito de veces: escollemos dous números x, y da terna e substituímolos por 0,6x-0,8y e 0,8x+0,6y. É posible obter a terna (2,8,10)(onde podemos permutar os elementos)?
- Kömal B 4092: Atopar naturais a, b, c e d tales que o máximo común divisor de cada parella é maior que 1 pero o máximo común divisor de cada terna é 1. É dicir, (a,b),(a,c),(a,d),(b,c),(b,d),(c,d)>1 e (a,b,c)=(a,b,d)=(a,c,d)=(b,c,d)=1
- Niels Henrik Abel 1994-95: Se x,y \in \mathbb{R} tales que (x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=1, entón x+y=0
- Problemas de práctica para a Olimpíada Española, 80: As parábolas y=cx^2+d e x=ay^2+b, con c,a>0 e b,d<0 córtanse en 4 puntos. Amosar que estes 4 puntos están nunha mesma circunferencia.
- Canadá 1969: Determinar cal dos dous números, \sqrt{c+1}-\sqrt{c} e \sqrt{c}-\sqrt{c-1} é maior para calquera c \geq 1
Intúo que xa tedes problemas abondo desta xeira.
0 comentarios:
Publicar un comentario