Observade esta inecuación: $$2 \left| x-2 \right| \geq \left|x+1\right|$$
Unha inecuación así podería aparecer nunha folla de exercicios do comezo de Matemáticas I, mais dada a dificultade técnica que entraña, non estou certo de se algunha vez puxen algo semellante. O típico exercicio nese curso ten un aspecto como este, despois de manipulacións alxébricas: $$ \left| x-1 \right| \geq 3$$
, onde vemos que só aparece un valor absoluto, o que fai que poidamos fundamentar o algoritmo de resolución na caracterización do valor absoluto como distancia á orixe ou $\left| x-a \right|$ como distancia ao número a, que é consecuencia do anterior.
Pero utilizar esa aproximación á inecuación orixinal implicaría ter que buscar os números reais x que cumpren que o dobre da distancia de x ao 2 é maior ou igual que a distancia de x ao -1. Non parece moi operativo.
Co cal, o procedemento estándar(coido) para resolver unha inecuación así consiste en eliminar os valores absolutos utilizando de xeito intelixente que $\left| x\right|^2=x^2$, xunto co feito de que en $(0,+\infty)$, a función elevar ao cadrado é crecente:
$$\left[2 \left| x-2 \right| \right]^2 \geq \left[\left|x+1\right|\right]^2$$
$$4 \left( x-2 \right)^2 \geq \left(x+1\right)^2$$
E queda unha inecuación de 2º grao, propia de 4º de ESO, neste caso obtemos como solución $\left(-\infty,1 \right] \cup \left[5,+\infty\right)$
Ata aquí o que fixen/faría eu na aula. Pero nunca levei a cabo un enfoque máis obvio e menos artificioso, case dá vergonza dicilo: DEBUXAR AS GRÁFICAS DAS MALDITAS FUNCIÓNS.
Podería parecer que este método gráfico só vai dar unha aproximación á solución, pero o mero feito de debuxalas e notar que cada valor absoluto é unha función con dous anacos, fai que sexa máis sinxelo resolvelo tamén de xeito alxébrico, exacto.
Observade as gráficas:
- Observamos rapidamente que puntos teñen pinta de dar problemas, neste caso x=-2, e comprobamos se existe o límite neses puntos, se é finito ou non. No exemplo o límite pola esquerda é $-\infty$ e o límite pola dereita é $+\infty$, polo que hai unha asíntota vertical aí. Isto é o máis sinxelo do exercicio, pero algúns alumnos, influídos polo que fan en clase particular, cren que se o punto non está no dominio xa vai haber asíntota vertical, o que é obviamente falso, como podemos ver con $g(x)=\frac{x^2-3x+2}{x-1}$
- Despois pasamos ás asíntotas horizontais e ás oblicuas, que son excluíntes "polo mesmo lado". Miramos o límite en $\infty$ e $-\infty$, se o límite é finito e igual a k, temos asíntota horizontal $y=k$, se non é finito, pode que teñamos asíntota oblicua, para o cal hai que ver a "velocidade" do límite, comparando coa recta y=x
- E dicir, calculamos $\lim \limits_{x \rightarrow \infty} \frac{f(x)}{x}$, que nos vai dar a pendente da asíntota se é finito e igual a m. E finalmente calculamos $\lim \limits_{x \rightarrow \infty} [f(x)-mx]$ que nos dará a ordenada na orixe da asíntota oblicua.
- Efectúan a división implícita na función racional, $f(x)=\frac{3x^2-x+1}{x+2}=3x-7+ \frac{15}{x+2}$
- Á vista da expresión de cociente e resto, como a fracción do final é nula no infinito, f(x) compórtase como a recta $y=3x-7$
- Podes resolvela coa fórmula, o que semella ser o máis común a nivel español.
- Podes completar o cadrado, de xeito alxébrico ou de xeito puramente xeométrico, sendo isto último o máis raro por aquí(estou supoñendo).
- Se a ecuación é sinxela abondo, podes utilizar as identidades de Cardano-Vieta a ver se tes sorte.
0 comentarios:
Publicar un comentario