2.5.13

Un dos meus problemas preferidos

Non sei moi ben por que, hoxe veume á memoria un problema xeométrico que apareceu hai anos nunha olimpíada matemática dos primeiros cursos de secundaria. Creo que era nunha competición de Uruguay, mais non estou certo. Se a atopo xa editarei esta entrada.
Como este blogue xa vai tendo unha idade, fun buscar na etiqueta Xeometría, pois tiña a sensación de que xa falara del hai dous ou tres anos. Mentres lle daba á roda do rato para abaixo, pensei que bonitos eran os debuxos que fixen co geogebra para ilustrar os diferentes teoremas e (principalmente) problemas que fun propoñendo. Ata que, baixando máis, é dicir, indo máis para atrás no tempo, esa sensación mudou ao ver cantas veces teño escrito dos mesmos problemas. Hai un do que escribín  tres veces, e polo menos outro do que escribín dúas. Por iso pasei un anaco buscando o problema do que vou falar hoxe. (Aínda cabe a posibilidade de que estea perdido nas arañeiras deste blogue, nalgunha entrada que non leu ninguén, nin eu)

O problema, un pouco modificado, é o seguinte:

Se trazamos a diagonal dun rectángulo, collemos un punto P calquera nesa diagonal e trazamos as perpendiculares aos lados, podemos formar dous novos rectángulos:


Como sempre, o debuxo explica mellor ca min


Se collemos o punto P de tal xeito que un dos rectángulos sexa ademais un cadrado (que a ollo sucede en dúas ocasións), que área é maior, a vermella ou a azul?


É obvio cal é o outro lugar onde podería estar P, non si?

Sen necesidade de editar a entrada atopei a fonte do problema: Com-Partida Matemática del Uruguay, 2006, que podedes consultar nesta web.

2 comentarios:

  1. Hipatia Galaica5/04/2013 11:50:00 PM

    Hai un razoamento bastante sinxelo...

    ReplyDelete
  2. ...e por iso é un dos preferidos. Para alguén que saiba só o imprescindible, ese razoamento pode ser a única alternativa. Se o pos en bacharelato, poden enlearse con variables e/ou coordenadas, a finais da ESO con semellanzas...

    ReplyDelete