17.1.26

Unha "trola" que adoito contar na aula

 

Alguén haberá que lembre unha vella entrada(de 2012!)deste blog, Mentiras que contamos os profesores de Matemáticas, na que o uso da palabra mentira quizais fose esaxerado. Por iso neste caso vou poñer trola entre vírgulas.

Xa comentei que este curso dou 1º e 3º de ESO, o que me leva, queira ou non, a ir comparando o panorama das matemáticas elementais que lles dou aos alumnos en ambos os dous cursos cando coinciden os contidos(eu négome a usar "sentido" aquí, non é funcional esa distinción). E como en 3º de ESO no meu centro comezamos polas unidades de Estatística, Combinatoria e Probabilidade, aínda estou agora na de Números Reais. Polo que a estas alturas de curso andamos cos números racionais, que implica necesariamente lembrar os rudimentos das fraccións. E este ano reparei en que unha das cousas que fago na aula, que non están programadas, pero que xa fixen moitos anos, é poñerlles diante esta cuestión:

Observando o produto de fraccións, 

$$\frac{5}{6} \cdot \frac{3}{8}=\frac{5 \cdot 3}{6 \cdot 8}=\frac{15}{48}$$

e o paralelismo que hai co de naturais,

$$7 \cdot 4=28 \rightarrow 28:4=7$$

Non sería máis inmediato dividir fraccións deste xeito, moito máis natural?

$$\frac{15}{48} : \frac{3}{8}=\frac{15 : 3}{48 : 8}=\frac{5}{6}$$

Se tedes sorte e picades aos alumnos con isto, non tardará en aparecer a explicación. Eu teño este ano un 3º especialmente apático, no que cando fago preguntas no medio das explicacións, as facianas usualmente son algo así:

   

Para sermos exactos, con todo o teatro que fago eu, máis ben son así:



De Steamboat Bil, Jr.


Pois nesa aula saíu a explicación inmediatamente: Porque este algoritmo non asegura que o resultado sexa unha fracción, só funciona ben se o numerador e o denominador do dividendo son múltiplos respectivamente do numerador e o denominador do divisor. Calquera exemplo posto ao chou serve para ver o problema:

$$\frac{7}{6} : \frac{4}{15}=\frac{7:4}{6:15}=\frac{1,75}{0,4}$$

E esta non é a peor das situacións, pois as divisións dan decimais exactos, poderiamos obter unha fracción de verdade multiplicando numerador e denominador por 20. Pero, que sucede se aínda por riba, as divisións dan decimais periódicos?

Quizais pensedes que isto dá demasiado choio para o anecdótico que é. E non vos faltará parte de razón, supoño, pero eu creo que traballar cuestións deste estilo na aula vai no camiño de entender por que se definen os conceptos e se determinan os procedementos. Pola mesma razón insisto cando se amplían definicións como a de potencia en que o motivo é que a nova definición sexa coherente coa previa e máis elemental.

 E aproveitando a marea, serve para notar que o conxunto dos raciconais é pechado baixo suma, resta, multiplicación e división. Que xa sabedes o importante que é. Se ademais fose completo...

0 comentarios:

Publicar un comentario