Cando traballamos a divisibilidade nas aulas de 1º de ESO habitualmente aparecen dous xeitos de calcular o máximo común divisor e o mínimo común múltiplo: por inspección dos divisores ou múltiplos dos números, ou mediante a descomposición factorial. Vexamos un exemplo con números xeitosos, 63 e 105.
Logo a simple vista o máximo común divisor é 21. Coa descomposición,
Para o mínimo a inspección pode ser ben árida:
O exemplo está collido para non ter que avanzar moito na lista dos múltiplos, podía ser moito peor (no peor dos casos habería que poñer a·b múltiplos). Neste caso vemos que o mínimo común múltiplo é 315
E coa descomposición, o mantra neste caso era "os factores comúns elevados ao maior expoñente, os non comúns, todos", que se presta a malinterpretacións no caso de traballar con máis de dous números.
Polo que
Haberá uns anos que colleu pulo un vello método de cálculo do mcd e do mcm, non sei se pola difusión que lle deu Jo Morgan en Resourceaholic, que consiste en ir gastando os divisores comúns dos números ata que non quede ningún, e nese momento multiplicar todos para obter o mcd. A imaxe xa se autoexplica:
A aparición do máximo común divisor aí é consecuencia directa da definición, pero algo máis oculto está o mínimo común múltiplo, para o que hai que multiplicar os divisores da columna esquerda cos resultados finais da ringleira inferior, é dicir,
Pero funciona o método este chulo con máis de 2 números? A primeira ollada parece dicir que si:
Observando as descomposicións,
Modifquemos o exemplo anterior para que non funcione:
Co cal, hai que facer algún tipo de modificación ao método para que funcione nestes casos. Sinceramente, eu comento este método para dous números pero non para máis (ás veces si no caso do mcd). Imaxinades vós como arranxar o problema?
Para rematar, un bo exercicio teórico, que aproveita que as calculadoras científicas actuais calculan o mcd e o mcm mais só de dous números, é pedirlles aos alumnos como usando a calculadora poden aínda así calcular o mcd de tres ou máis números. A min encántanme estas cousiñas elementais, recoñezo.